Matricial decomposition of systems over rings
نویسنده
چکیده
This paper extends to non-controllable linear systems over rings the property FCs (s > 0), which means “feedback cyclization with s inputs”: given a controllable system (A, B), there exist a matrix K and a matrix U with s columns such that (A + BK, BU) is controllable. Clearly, FC1 is the usual FC property. The main technique used in this work is the obtention of block decompositions for systems, with controllable subsystems of a certain size. Each of the studied decompositions is associated to a class of commutative rings for which all systems can be decomposed accordingly. Finally, examples are shown of FCs rings (for s > 1) which are not FC rings.
منابع مشابه
Classical quasi-primary submodules
In this paper we introduce the notion of classical quasi-primary submodules that generalizes the concept of classical primary submodules. Then, we investigate decomposition and minimal decomposition into classical quasi-primary submodules. In particular, existence and uniqueness of classical quasi-primary decompositions in finitely generated modules over Noetherian rings are proved. More...
متن کاملAN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملLiftings of Diagrams of Semilattices by Diagrams of Dimension Groups
There are various ways to obtain distributive semilattices from other mathematical objects. Two of them are the following; we refer to Section 1 for more precise definitions. A dimension group is a directed, unperforated partially ordered abelian group with the interpolation property, see also K.R. Goodearl [6]. With a dimension group G we can associate its semilattice of compact ( = finitely g...
متن کاملNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملRegularity conditions for arbitrary Leavitt path algebras
We show that if E is an arbitrary acyclic graph then the Leavitt path algebra LK(E) is locally K-matricial; that is, LK(E) is the direct union of subalgebras, each isomorphic to a finite direct sum of finite matrix rings over the fieldK. As a consequence we get our main result, in which we show that the following conditions are equivalent for an arbitrary graph E: (1) LK (E) is von Neumann regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017